
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Operator expansions in stochastic dynamics
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~Received 10 June 1997; revised manuscript received 7 October 1997!

Higher-order operator factorizations are a powerful tool for efficiently treating classical mechanics. This
paper presents an application of the method to stochastic dynamics. Using a fourth-order symmetric decom-
position of the time evolution operator, we arrive at a high-accuracy scheme for propagating the distribution
function in time. Its power is demonstrated by means of two problems, namely, the dynamics of a colored noise
process and a Brownian particle in a potential field. The applications show our method to be superior over the
standard propagation scheme based on the Trotter splitting in that it allowsmuch largertime steps withno loss
of precision.@S1063-651X~98!00902-7#

PACS number~s!: 05.40.1j, 02.50.Ey
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I. INTRODUCTION

Recent years have seen considerable activity in nume
methods that employ various different operator expansion
carry out calculations in quantum and statistical mechan
@1–9#. The key features of the methods are factorizing
time evolution operator into a product ofN exponential op-
erators,

etL5~etL/N!N; ~1.1!

partitioning the full operatorL into two exactly solvable
partsL5A1B; and approximating the propagator for a sh
time t5t/N by a product of functions involvingA andB,

et~A1B!5Sk~t!1O~tk!, ~1.2!

wherek denotes the order of approximation. The solution
an arbitrary long timet5Nt is obtained by repeatedly usin
Eq. ~1.2!,

et~A1B!5Sk~ t !1O~ tk11/Nk!, Sk~ t !5Sk~t!N, ~1.3!

which in a coordinate representation yields the discrete p
integral representation

P~q,t !5E )
n50

N21

dqnPk~qn11,tuqn!P~q0,0!1O~ tk11/Nk!,

~1.4!

with qN5q. It is clear that the efficacy of the resulting prop
gation scheme depends crucially on the number of time
cretizations ~integration variables! necessary for conver
gence. The latter in turn can be reduced if the accuracy of
short time propagatorPk(q

n11,tuqn)5^qn11uSk(t)uqn& can
be extended to a longer time intervalt.

The most common procedure of approximating the pro
gator for short time utilizes the Trotter splitting@1#

S2~t!5etA/2etBetA/2. ~1.5!

*Permanent address: Institute for High Temperatures, 13
Izhorskaya Street, 127412 Moscow, Russia.
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A small sample of this work can be found in Refs.@2–4#.
Since, however,A and B are in general noncommuting op
erators, the error accumulated in Eq.~1.4! by making use of
this decomposition is of order 1/N2; accordingly, the dimen-
sion of the resulting integral can be very high if the desir
propagation time is long. A superior breakup was given
Suzuki@5#, who proposed a generalization of Eq.~1.5! in the
form

Sk~t!5)
i

eaitAebitB, ~1.6!

with coefficients (ai ,bi) determined by the required order o
accuracy. Although factorizations of arbitrarily high orde
can be obtained in this way, the approach has no impac
solving many-body problems in quantum statistics and n
equilibrium statistical mechanics. The reason is that, bey
second order, any factorization of the form~1.6! must pro-
duce some negative coefficients in the set (ai ,bi). When
applied to Fokker-Planck and/or Bloch equations, this me
that negative times must appear at some diffusion opera
making the resulting factorization unbounded.

Some recent advance in this area can be attributed to
introduction of extrapolation methods to remove time slic
errors in Trotter-approximated propagators@6,7#. An attrac-
tive feature of symmetric decompositions is that an appro
mate propagator constructed ofN products, each of which is
time reversible,

Sk~2t !Sk~ t !51, ~1.7!

has an asymptotic error expansion withevenpowers of 1/N.
Therefore, standard extrapolation methods can be used
cessively to eliminate the low-order errors resulting fro
time discretization. In particular, a Romberg-type opera
approximation without the 1/N2 error is @6#

S4~ t !5 1
3 @4S2~ t/2N!2N2S2~ t/N!N#. ~1.8!

Implementing this numerically requires up to three times
much computation and doubles the storage, but the rem
ing error is of order 1/N4.

In the present paper we propose an alternative propa
tion scheme which provides the same level of accuracywith
9
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57 1285OPERATOR EXPANSIONS IN STOCHASTIC DYNAMICS
no increase of storage and computation. This is achieved
making use of a fourth-order symmetric factorization of t
form

S4~t!5eatAetB/2etCetB/2eatA, ~1.9!

with

C5~122a!A1 1
24t2

†2~126a16a2!A

1~126a!B,@B,A#‡, ~1.10!

wherea is an arbitrary number from the interval@0,1#. The
above breakup is obtainable by a variety of methods, e.g.
repeated application of the Baker-Campbell-Housdorff f
mula. It is a straightforward generalization of the vario
decompositions available in the literature for the exponen
operator. In particular, a known decomposition of De Ra
and De Raedt@1# follows from Eqs.~1.9! and ~1.10! with a
5 1

2; while for a5 1
6 anda5(121/A3)/2, it reproduces two

different factorizations recently derived by Suzuki@8# ~see
also Ref.@9#!.

Although approximations like Eq.~1.9! have been known
since the early days@10#, and have frequently been used f
numerically solving many-body problems in classical m
chanics, their effective application to Fokker-Planck dyna
ics has not yet been fully realized. A reason for this seem
be the impression that the commutator involved in Eq.~1.10!
complicates the expression in such a way that the calcula
of P4 is always out of the question. Indeed, applying th
above factorization to simple one-dimensional systems,
immediately run into trouble, as the operatorC, which arises
in that case, is much more complicated than the origi
Fokker-Planck operator. The same, however, is not gene
true for systems with more than one degree of freedom.
essential step in devising the method outlined below wa
realize that application of Eq.~1.9! to multidimensional sys-
tems may be much easier than in one dimension. The ne
sary condition for this is the noninvertibility of the diffusio
matrix. In such a case, use of Eq.~1.9! may be as simple a
that of the primitive Trotter splitting, Eq.~1.5!, and require
no additional analytical work to evaluate the propagator.

It is our purpose here to illustrate the computational util
of that method in two concrete models: the dynamics o
colored noise process, and the Brownian motion in a po
tial field. For simplicity, in Eq.~1.10! we remove one of the
two composite operators by settinga5 1

6,

C5 2
3 A1 1

72t2
†A,@B,A#‡, ~1.11!

though other values ofa are also possible. In particula
when evaluating both composite operators is not a m
problem, the free parametera can be determined accordin
to some variational principles, so that the resulting short ti
propagator is accurate for as long a timet as possible. More-
over, since the breakup~1.9! is symmetric, extrapolation
methods can be employed to improve its accuracy furth
For example, an operator without the 1/N4 error is

S6~ t !5 1
15 @16S4~ t/2N!2N2S4~ t/N!N#. ~1.12!

Finally, to conclude this introduction, it should be not
that there are also other methods for obtaining high-accu
y
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short time propagators. We mention specifically the work
Drozdov @11#, who developed a theoretical approach to a
proximate the single step propagator systematically by a
lytic expressions. The approach distinguishes itself fr
other methods in that it gives global approximations va
not only for short times, but also in the intermediate and lo
time domains. This is achieved by expanding the exponen
the propagator in a Taylor series in time, and efficiently e
trapolating the behavior of the series to its eventual sum
means of sum acceleration techniques. As given, though
approach applies only to Fokker-Planck processes whose
fusion matrices possess an inverse, and not to processes
singular diffusion matrices. Another useful approach is
cumulant expansion for the short time propagator@12#,
which also has an effect of reducing the number of integ
tion variables. Various order approximations can either
derived from the underlying Langevin equations, or by so
ing time evolution equations of moments. The approach
simple and easily applicable to any Fokker-Planck equa
regardless of whether or not the diffusion matrix is inve
ible; but the utility of the approximations so obtained is
general restricted to short times.

II. SYSTEM DRIVEN BY COLORED NOISE

Over recent years, there has been a steadily growing
terest in the effects that arise from colored noise in nonlin
dynamical systems@13#. A typical model repeatedly studie
within this context is described by the stochastic differen
equation

ẋ5G~x!1v~ t !, ~2.1!

whereG(x) is an arbitrary function ofx, andv(t) an exter-
nal Gaussian stochastic force normalized to

^v~ t !&50, ^v~ t !v~s!&5gD exp~2gut2su!, ~2.2!

with g21 being the correlation time of the noise, andD the
noise intensity. The statistics of systems~2.1! and~2.2! may
be embodied in the two-dimensional Fokker-Planck equa

] tP~x,v,t !5LP~x,v,t !

[$2]x@G~x!1v#

1g]v~v1gD]v!%P~x,v,t !. ~2.3!

One notes that the diffusion matrix of Eq.~2.3! does not
possess an inverse, and the equation itself does not o
detailed balance. The former property prevents us from m
ing use of many powerful nonperturbative schemes of qu
tum and statistical mechanics, while the latter means that
stationary solution of Eq.~2.3! cannot be calculated in close
form; only approximate expressions are available@13#.

In order to split the evolution operatoretL into a product
of exactly solvable parts, we partition the Fokker-Planck o
eratorL, Eq. ~2.3!, into a leading~reference! contributionB
and an anharmonic correctionA reading

B52v]x1g]v~v1gD]v! ~2.4!

and
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1286 57A. N. DROZDOV AND J. J. BREY
A52]xG~x!. ~2.5!

As defined, the operatorA describes the deterministic path
the system, and the operatorB incorporates fluctuations
away from this path. In what follows, byPr(x,v,tux0 ,v0) we
shall mean the propagator of the reference process

Pr~x,v,tux0 ,v0!5etBd~x2x0!d~v2v0!, ~2.6!

whose explicit expression is given in the Appendix. Mor
over, it is not difficult to show that

exp@2t]xG~x!# f ~x!5J~x,t ! f @H~x,t !#, ~2.7!

where

J~x,t ![]xH~x,t !5G@H~x,t !#/G~x!, ~2.8!

while the functionH(x,t) is determined by the equation

H~x,t !5exp@2tG~x!]x#x. ~2.9!

The general solution of Eq.~2.9! is

H~x,t !5F21@F~x!2t#, F~x!5Ex

dy/G~y!,

~2.10!

with F21 being the inverse function, i.e.,F21@F(x)#5x. In
the event that the integral in Eq.~2.10! is not doable analyti-
cally, the functionH can be evaluated approximately by e
panding the right-hand side of Eq.~2.9! in a Taylor series in
t. To second order int this gives

H~x,t !5x2tG~x!1 1
2 t2G~x!G8~x!1O~ t3!,

~2.11!

J~x,t !5exp@2tG8~x!1 1
2 t2G~x!G9~x!#1O~ t3!,

where the prime denotes differentiation with respect tox. As
shown in Ref.@7#, approximations like Eq.~2.11! do not
deteriorate the accuracy of Trotter-approximated propa
tors.

Now we are able to evaluate the short time propagato
the coordinate representation. Use of the above splitting
gether with the Trotter formula~1.5! yields the standard
second-order approximation@3#

P2~x,v,tux0 ,v0!

5J~x, 1
2 t!Pr@H~x, 1

2 t!,v,tuH~x0 ,2 1
2 t!,v0#.

~2.12!

In order to take higher-order corrections into account,
first have to evaluate the commutatorC. The latter is easily
determined in terms of Eqs.~1.11!, ~2.4!, and ~2.5! to give
the operator

C52]xG~x,v !,

G~x,v !5 2
3 G~x!1 1

72t2v@G~x!G9~x!2G82~x!#,
~2.13!
-

a-

in
o-

e

analogous to the drift operatorA defined by Eq.~2.5!. With
this finding, we arrive at the fourth-order factorization

S4~t!5e2t]xG/6etB/2e2t]xGetB/2e2t]xG/6, ~2.14!

which appears as a product of two Trotter approximan
leaving us finally with

P4~x,v,tux0 ,v0!

5J~x, 1
6 t!E dy duPr@H~x, 1

6 t!,v, 1
2 tuH~y,u,2t!,u#

3Pr@y,u, 1
2 tuH~x0 ,2 1

6 t!,v0#. ~2.15!

The functionH(x,v,t) involved in Eq.~2.15! is determined
by Eqs.~2.9! and ~2.10!, if one replaces in these equation
G(x) by G(x,v). It is thus seen that the new short tim
propagator, Eq.~2.15!, requires an additional quadratur
compared to the Trotter approximation, Eq.~2.12!. On the
other hand, the error accumulated in theN factors in the
entire propagator, Eqs.~1.4! and ~2.15!, is of order N24;
consequently, the present propagator should allow lar
time steps to be taken than the Trotter approximation
comparable accuracy. Thus the key question we shall add
in numerical applications is the following: Does the increa
in time step more than compensate for the added comp
tional complexity?

Because closed-form analytic results are only availa
for a linear drift,

G~x!52vx, ~2.16!

we tackle this problem for illustrating the power of th
present technique. Figure 1 shows the relative error in
second cumulant,M2(t)5^x2(t)&2^x(t)&2, made by using
Eqs.~2.14! and ~1.5! assingle step propagators. The calcu-
lation is performed forD5g5v5x05v051. Also shown
is the error made by using the fourth-order cumulant exp

FIG. 1. Logarithm of the relative error«5 @~approximate!
2~exact!#/~exact! in the second cumulant made by using Eqs.~2.12!
~dashed line! and ~2.15! ~solid line! as single step propagators
Open and solid circles show the errors made by these propagato
the path integral evaluation, witht51, of the same quantity. The
dot-dashed line is for the fourth-order cumulant expansion of
single step propagator.
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57 1287OPERATOR EXPANSIONS IN STOCHASTIC DYNAMICS
sion of the propagator derived by one of us recently@12#. As
anticipated, the error increases linearly witht in this case,
and very soon grows out of the scale of the figure. The sa
is true to some degree for the Trotter splitting, whose er
rapidly reaches 100%. In contrast, use of the fourth-or
decomposition, Eq.~2.14!, reduces the error over a broa
range oft by nearly two orders of magnitude. This is esp
cially pleasing since the properties of the free Brownian r
erence propagator employed in our calculation are very
ferent from those of the Ornstein-Uhlenbeck process. T
former describes the unrestricted diffusion spreading, w
the latter has, forv.0, a nontrivial stationary solution
Hence one may conclude that the present technique sh
promise for calculating not only short, but also intermedi
time dynamicsanalytically.

However, the primary purpose we envision for Eq.~2.15!
is an improved short time propagator for use in a path in
gral. Figure 1 also shows the errors made by Eqs.~2.14! and
~1.5! in the path integral evaluation of the same quan
according to Eq.~1.4!. It is seen that an acceptable precisi
of three significant digits is achieved in calculations with
relatively large time stept51 with the present fourth-orde
propagator. For comparison, the Trotter-approximated pro
gator provides an analogous accuracy just fort&0.1, and
thereby requires a computation that is five times as la
Analogous results for the cumulant expansion of the sh
time propagator are not presented in this case, as the l
fails grossly fort51.

Next, Fig. 2 shows the relative errors in the path integ
evaluation, witht51, of the stationary solutionPe(x),

Pe~x!5 lim
t→`

E
2`

`

dv P~x,v,t !. ~2.17!

The error made by the Trotter-approximated propagato
again two orders greater than that of Eq.~2.15!. Thus the
practical advantage offered by our formulation is that ac
rate results are obtainable with rather small values ofN even
though the net incrementt is large. As seen in Fig. 2, a

FIG. 2. Logarithm of the relative error in the path integral eva
ation of the stationary solution, Eq.~2.17!. The dashed and solid
lines are, respectively for Eqs.~2.12! and ~2.15! with t51. Circles
are the result obtained after one folding of Eq.~2.15! with t55.
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precision of a few percent is achievable in the calculation
the stationary solution with a discretization as coarse aN
52, for t55.

III. KRAMERS EQUATION

As a second example, we consider the Kramers equa
which is a special Fokker-Planck equation describing
Brownian motion in a potentialU(x) @14#

] tP~x,v,t !5LP~x,v,t !

[@2v]x1U8~x!]v

1g]v~v1b21]v!#P~x,v,t !. ~3.1!

Hereg denotes the friction coefficient, andb is the inverse
temperature. The Kramers equation is commonly used
number of problems of physics and chemistry, such as re
tion kinetics, superionic conductors, nucleation, and Jose
son tunneling junction@15#. As is the case with the colore
noise problem, the diffusion matrix of Eq.~3.1! is singular.
This equation, however, is more convenient for our purp
in the sense that it allows for a straightforward calculation
the stationary solution

Pe~x,v !5Z21exp@2bv2/22bU~x!#, ~3.2!

with a partition functionZ.
Proceeding along the same line as in Sec. II, we split

Fokker-Planck operatorL defined by Eq.~3.1! into a linear
reference part

B52v]x1g]v~v1b21]v!, ~3.3!

and the rest,

A5U8~x!]v . ~3.4!

Insertion of these operators into the Trotter formula, E
~1.5!, yields, in a straightforward way@3#,

P2~x,v,tux0 ,v0!5Pr@x,v1 1
2 tU8~x!,tux0 ,v02 1

2 tU8~x0!#,

~3.5!

where the reference propagatorPr(x,v,tux0 ,v0) is the same
as in Eq.~2.12!. It is given by Eqs.~A1!, ~A2!, and~A3! with
D5(bg)21 andv50.

On the other hand, substituting Eqs.~3.3! and ~3.4! into
Eq. ~1.11!, we obtain

C5Q~x!]v , Q~x!5 2
3 U8~x!@12 1

24t2U9~x!#, ~3.6!

from which it follows that implementation of Eq.~1.9! is as
simple in this case as that of the Trotter formula, Eq.~1.5!.
The resulting fourth-order propagator reads

P4~x,v,tux0 ,v0!5E dy duPr@x,v1 1
6 tU8~x!, 1

2 tuy,u

2tQ~y!#Pr@y,u, 1
2 tux0 ,v02 1

6 tU8~x0!#.

~3.7!

In order to illustrate the power of the present scheme
treating nonlinear problems, we apply the various appro

-
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1288 57A. N. DROZDOV AND J. J. BREY
mations discussed above for the short time propagator to
path integral evaluation of the stationary distributionPe(x).
We take a symmetric potential of the form

U~x!5~x211!2, ~3.8!

and perform the calculation withb51 andt50.1, for vari-
ous different values ofg, x0, andv0. The quadratures of Eqs
~1.4! and ~3.7! are evaluated iteratively by taking advanta
of the fast Fourier transform~FFT!. Although path integral
representations of stochastic dynamics are, in general,
suited to the FFT, a way for overcoming this problem w
developed in a previous paper@7#. The method employs the
Stirling interpolation to readjust the distribution function e
ery time step dynamically, with a mild increase in cost a
with no loss of precision. Shown in Fig. 3 are results o
tained for g55 using the Trotter formula and the fourth
order factorization. Also shown are results obtained from
fourth-order cumulant expansion for the propagator@12#. As
anticipated, the error made by the present propaga
scheme is again much lower than those of the two ot
techniques. It is also seen that use of extrapolation~1.12! to
remove 1/N4 errors further increases the accuracy by nea
three orders of magnitude. For comparison, a precision
1025 is attainable in calculations with the Trotte
approximated propagator just fort&0.01. As to a precision
of nine significant digits, the Trotter formula fails to provid
it even thought50.001.

It is also pleasing that the error made by using the pres
propagator turns out to be rather insensitive tog, x0, andv0.
This is in drastic contrast to the cumulant expansion, wh
accuracy deteriorates with increasingg, and already forg
;10 the method fails to produce correct results. The rea
is that the expansion for the second cumulant, which de
mines the width of the short time propagator, becomes ne
tive for gt. 4

3. As a result, very short time steps are requir
for achieving the high-friction limit in this case.

FIG. 3. Logarithm of the relative error in the path integral eva
ation, with t50.1, of the stationary solution of a Kramers mod
Eqs. ~3.1! and ~3.8!. Dashed line: Trotter formula, Eq.~3.5!; dot-
dashed line: fourth-order cumulant expansion; solid line: pres
fourth-order propagator, Eq.~3.7!; dots: sixth-order propagator, Eq
~1.12!.
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IV. CONCLUSIONS

Our primary result is the demonstration that higher-ord
factorizations designed for solving classical and quant
problems are very effective when treating Fokker-Plan
processes with singular diffusion matrices. In such a ca
the various different operators involving higher-order deriv
tives may cancel so that the composite operatorC, Eq.
~1.11!, is no more complicated than the drift term of th
original Fokker-Planck operator. The resulting propagat
scheme greatly reduces the error for a moderate numbe
time steps or requires, for comparable accuracy, consider
less computation than standard path integral methods no
use. Yet another attractive feature of the present schem
that it is time reversible. Therefore, extrapolation metho
for removing time slice errors can be employed to furth
improve its accuracy.

Finally, we would like to emphasize that we have n
explicitly covered all possible cases to which our approa
would apply. The method outlined above is also applica
to many other multidimensional Fokker-Planck proces
whose operator can be partitioned into two exactly solva
parts such that the composite operatorC possesses the exa
solution. This happens to be so when the underlying stoch
tic system is of the type in Eqs.~2.3! or ~3.1!. However, this
is not the generic case for any system with a noninverti
diffusion matrix. In particular, the method fails to treat ef
ciently models that are nonlinear both inx and inv. In ad-
dition, it may hardly be applied to multidimensional system
driven by multiplicative noise, as the latter cannot in gene
be converted to additive noise by a transformation of va
ables.
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APPENDIX

Although the exact solution for an arbitrary Ornstei
Uhlenbeck process can be found in a number of textbooks
stochastic processes~see, e.g., the book by Risken@15#!, this
solution is formal, and its application is far from straightfo
ward in each particular case. The aim of this appendix is
explicitly solve the Fokker-Planck equation~2.3! for a linear
drift coefficient, Eq.~2.16!. Since the process is linear, th
propagator is given by the two-variable Gaussian distribut

P~x,v,tux0 ,v0!5
1

2pAM ~ t !
expH 2

M vv~ t !

2M ~ t !
@x2Mx~ t !#2

1
Mxv~ t !

M ~ t !
@x2Mx~ t !#@v2M v~ t !#

2
Mxx~ t !

2M ~ t !
@v2M v~ t !#2J , ~A1!

with mean values

-

nt
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Mx~ t !5x0e2vt2v0~e2vt2e2gt!/~v2g!,
~A2!

M v~ t !5v0e2gt,

and variances

Mxx~ t !5
g2D

~v2g!2H 1

v
~12e22vt!1

1

g
~12e22gt!

2
4

v1g
@12e2~v1g!t#J ,
ys

at
.

Mxv~ t !5
g2D

v2gH 1

g
~12e22gt!2

2

v1g
@12e2~v1g!t#J ,

~A3!

M vv~ t !5gD~12e22gt!.

In the above,M (t)5Mxx(t)M vv(t)2Mxv
2 (t). Finally, the

expression for the reference propagatorPr(x,v,tux0 ,v0) fol-
lows from the present solution forv→0.
, H.
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